You have selected a reliable, high-quality dispensing system from Nordson EFD, the world leader in fluid dispensing. The Liquidyn® P-Jet SolderPlus® jet valve was designed specifically for industrial dispensing and will provide you with years of trouble-free, productive service.

This manual will help you maximize the usefulness of your Liquidyn P-Jet SolderPlus valve.

Please spend a few minutes to become familiar with the controls and features. Follow our recommended testing procedures. Review the helpful information we have included, which is based on more than 50 years of industrial dispensing experience.

Most questions you will have are answered in this manual. However, if you need assistance, please do not hesitate to contact EFD or your authorized EFD distributor. Detailed contact information is provided on the last page of this document.

The Nordson EFD Pledge

Thank You!

You have just purchased the world's finest precision dispensing equipment.

I want you to know that all of us at Nordson EFD value your business and will do everything in our power to make you a satisfied customer.

If at any time you are not fully satisfied with our equipment or the support provided by your Nordson EFD Product Application Specialist, please contact me personally at 800.556.3484 (US), 401.431.7000 (outside US), or Jamie.Clark@nordsonefd.com.

I guarantee that we will resolve any problems to your satisfaction.

Thanks again for choosing Nordson EFD.

Jamie Clark, Vice President
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>How the Valve Operates</td>
<td>5</td>
</tr>
<tr>
<td>How the Valve is Controlled</td>
<td>5</td>
</tr>
<tr>
<td>Nordson EFD Product Safety Statement</td>
<td>6</td>
</tr>
<tr>
<td>Halogenated Hydrocarbon Solvent Hazards</td>
<td>7</td>
</tr>
<tr>
<td>High Pressure Fluids</td>
<td>7</td>
</tr>
<tr>
<td>Qualified Personnel</td>
<td>8</td>
</tr>
<tr>
<td>Intended Use</td>
<td>8</td>
</tr>
<tr>
<td>Regulations and Approvals</td>
<td>8</td>
</tr>
<tr>
<td>Personal Safety</td>
<td>8</td>
</tr>
<tr>
<td>Fire Safety</td>
<td>9</td>
</tr>
<tr>
<td>Preventive Maintenance</td>
<td>9</td>
</tr>
<tr>
<td>Important Disposable Component Safety Information</td>
<td>10</td>
</tr>
<tr>
<td>Action in the Event of a Malfunction</td>
<td>10</td>
</tr>
<tr>
<td>Disposal</td>
<td>10</td>
</tr>
<tr>
<td>Equipment-Specific Safety Information</td>
<td>11</td>
</tr>
<tr>
<td>Specifications</td>
<td>12</td>
</tr>
<tr>
<td>Operating Features</td>
<td>13</td>
</tr>
<tr>
<td>Installation</td>
<td>14</td>
</tr>
<tr>
<td>Unpack the System Components</td>
<td>14</td>
</tr>
<tr>
<td>Assemble the Valve (Initial Assembly)</td>
<td>15</td>
</tr>
<tr>
<td>Change the Fluid Body or Tappet (Optional)</td>
<td>16</td>
</tr>
<tr>
<td>Set the Tappet Concentricity</td>
<td>18</td>
</tr>
<tr>
<td>Install a Nozzle Heater (Optional)</td>
<td>20</td>
</tr>
<tr>
<td>Mount the Valve</td>
<td>21</td>
</tr>
<tr>
<td>Connect Cables</td>
<td>22</td>
</tr>
<tr>
<td>Connect the Air Supply</td>
<td>23</td>
</tr>
<tr>
<td>Installation Example</td>
<td>24</td>
</tr>
<tr>
<td>Initial Startup</td>
<td>25</td>
</tr>
<tr>
<td>Parameter Settings</td>
<td>26</td>
</tr>
<tr>
<td>Recommended Setup Adjustments</td>
<td>27</td>
</tr>
<tr>
<td>Tappet Adjustment</td>
<td>28</td>
</tr>
<tr>
<td>Adjusting the Force Screw</td>
<td>28</td>
</tr>
<tr>
<td>Adjusting the Stroke</td>
<td>29</td>
</tr>
<tr>
<td>Service</td>
<td>30</td>
</tr>
<tr>
<td>Recommended Maintenance Schedule</td>
<td>30</td>
</tr>
<tr>
<td>Valve Cleaning</td>
<td>30</td>
</tr>
<tr>
<td>Shut Down the System</td>
<td>31</td>
</tr>
<tr>
<td>Disassemble the Valve</td>
<td>31</td>
</tr>
<tr>
<td>Clean the Valve Components</td>
<td>32</td>
</tr>
<tr>
<td>Assemble the Valve (After Cleaning)</td>
<td>33</td>
</tr>
</tbody>
</table>

Continued on next page
Contents (continued)

Solder Paste ..35
Part Number ..35
Replacement Parts ..36
 Valve Components ...36
 Nozzle and Nozzle Retaining Nuts ...36
 Syringe Barrels and Accessories ..37
Accessories ..38
 Quick-Release Valve Mounting Components ..38
Precision Pressure Regulator ..38
Nozzle Heaters ...39
 Nozzle Heater Kits ...40
 Nozzle Heater Cables ..40
 Nozzle Heater O-Rings ...40
 Heater Key ...40
Tools and Supplies ..41
Technical Data ..42
 Dimensions ...42
M8 Valve Cable Pin Positions ..42
Appendix A, About Non-Contact Dispensing ..43
Appendix B, P-Jet SolderPlus Valve Interface Overview ..44
 Electrical Control ...44
 Optional Nozzle Heater Control ..45
 Pneumatic Control ...46
 Valve Configuration Options ...46
Appendix C, Special Instructions for Solder Paste Dispensing ..47
Introduction
The Liquidyn P-Jet SolderPlus pneumatic micro-dispensing jet valve system is designed for the non-contact dispensing of EFD SolderPlus solder paste. Nordson EFD solder paste is pre-qualified for use with the SolderPlus valve, making it an ideal choice for a complete jet dispensing system for solder.

Valve Speed and Deposit Size
Depending on the type of solder paste, the valve can produce micro-deposits as small as 700 μm in diameter.

Modular, Exchangeable Components
Because the material-carrying components are separate from the actuator, dispensing tappets and nozzles can be quickly and easily exchanged, allowing the valve to efficiently dispense highly abrasive mediums as well. The exchangeable design also makes material-type changeout and component replacement fast and easy.

The Liquidyn P-Jet SolderPlus valve is configurable. Many choices for the material supply components and the nozzle are available, including an optional nozzle heater.

How the Valve Operates
The Liquidyn P-Jet SolderPlus valve is electro-pneumatically operated by a low voltage, adjustable pulse signal that can start at 2 ms. The dispensing tappet remains open until the trigger signal ends. The valve is normally closed (NC) when idle, thus reducing the possibility of unintended fluid release upon power off.

How the Valve is Controlled
The valve can be operated using a Nordson EFD Liquidyn valve controller or directly by the customer via a 24V input using a customer-supplied controller or a programmable logic controller (PLC).
Nordson EFD Product Safety Statement

⚠️ WARNING

The safety message that follows has a WARNING level hazard.
Failure to comply could result in death or serious injury.

ELECTRIC SHOCK
Risk of electric shock. Disconnect power before removing covers and / or disconnect, lock out, and tag switches before servicing electrical equipment. If you receive even a slight electrical shock, shut down all equipment immediately. Do not restart the equipment until the problem has been identified and corrected.

⚠️ CAUTION

The safety messages that follow have a CAUTION level hazard.
Failure to comply may result in minor or moderate injury.

READ MANUAL
Read manual for proper use of this equipment. Follow all safety instructions. Task- and equipment-specific warnings, cautions, and instructions are included in equipment documentation where appropriate. Make sure these instructions and all other equipment documents are accessible to persons operating or servicing equipment.

MAXIMUM AIR PRESSURE
Unless otherwise noted in the product manual, the maximum air input pressure is 7.0 bar (100 psi). Excessive air input pressure may damage the equipment. Air input pressure is intended to be applied through an external air pressure regulator rated for 0 to 7.0 bar (0 to 100 psi).

RELEASE PRESSURE
Release hydraulic and pneumatic pressure before opening, adjusting, or servicing pressurized systems or components.

BURNS
Hot surfaces! Avoid contact with the hot metal surfaces of heated components. If contact can not be avoided, wear heat-protective gloves and clothing when working around heated equipment. Failure to avoid contact with hot metal surfaces can result in personal injury.
Nordson EFD Product Safety Statement (continued)

Halogenated Hydrocarbon Solvent Hazards

Do not use halogenated hydrocarbon solvents in a pressurized system that contains aluminum components. Under pressure, these solvents can react with aluminum and explode, causing injury, death, or property damage. Halogenated hydrocarbon solvents contain one or more of the following elements.

<table>
<thead>
<tr>
<th>Element</th>
<th>Symbol</th>
<th>Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorine</td>
<td>F</td>
<td>“Fluoro-“</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Cl</td>
<td>“Chloro-“</td>
</tr>
<tr>
<td>Bromine</td>
<td>Br</td>
<td>“Bromo-“</td>
</tr>
<tr>
<td>Iodine</td>
<td>I</td>
<td>“Iodo-“</td>
</tr>
</tbody>
</table>

Check the Safety Data Sheet (SDS) or contact your material supplier for more information. If you must use halogenated hydrocarbon solvents, contact your EFD representative for compatible EFD components.

High Pressure Fluids

High pressure fluids, unless they are safely contained, are extremely hazardous. Always release fluid pressure before adjusting or servicing high pressure equipment. A jet of high pressure fluid can cut like a knife and cause serious bodily injury, amputation, or death. Fluids penetrating the skin can also cause toxic poisoning.

⚠️ WARNING

Any injury caused by high pressure liquid can be serious. If you are injured or even suspect an injury:
- Go to an emergency room immediately.
- Tell the doctor that you suspect an injection injury.
- Show the doctor the following note.
- Tell the doctor what kind of material you were dispensing.

Medical Alert — Airless Spray Wounds: Note to Physician

Injection in the skin is a serious traumatic injury. It is important to treat the injury surgically as soon as possible. Do not delay treatment to research toxicity. Toxicity is a concern with some exotic coatings injected directly into the bloodstream.

Qualified Personnel

Equipment owners are responsible for making sure that EFD equipment is installed, operated, and serviced by qualified personnel. Qualified personnel are those employees or contractors who are trained to safely perform their assigned tasks. They are familiar with all relevant safety rules and regulations and are physically capable of performing their assigned tasks.
Nordson EFD Product Safety Statement (continued)

Intended Use

Use of EFD equipment in ways other than those described in the documentation supplied with the equipment may result in injury to persons or damage to property. Some examples of unintended use of equipment include:

- Using incompatible materials.
- Making unauthorized modifications.
- Removing or bypassing safety guards or interlocks.
- Using incompatible or damaged parts.
- Using unapproved auxiliary equipment.
- Operating equipment in excess of maximum ratings.
- Operating equipment in an explosive atmosphere.

Regulations and Approvals

Make sure all equipment is rated and approved for the environment in which it is used. Any approvals obtained for Nordson EFD equipment will be voided if instructions for installation, operation, and service are not followed. If the equipment is used in a manner not specified by Nordson EFD, the protection provided by the equipment may be impaired.

Personal Safety

To prevent injury, follow these instructions:

- Do not operate or service equipment unless you are qualified.
- Do not operate equipment unless safety guards, doors, and covers are intact and automatic interlocks are operating properly. Do not bypass or disarm any safety devices.
- Keep clear of moving equipment. Before adjusting or servicing moving equipment, shut off the power supply and wait until the equipment comes to a complete stop. Lock out power and secure the equipment to prevent unexpected movement.
- Make sure spray areas and other work areas are adequately ventilated.
- When using a syringe barrel, always keep the dispensing end of the tip pointing towards the work and away from the body or face. Store syringe barrels with the tip pointing down when they are not in use.
- Obtain and read the Safety Data Sheet (SDS) for all materials used. Follow the manufacturer’s instructions for safe handling and use of materials and use recommended personal protection devices.
- Be aware of less-obvious dangers in the workplace that often cannot be completely eliminated, such as hot surfaces, sharp edges, energized electrical circuits, and moving parts that cannot be enclosed or otherwise guarded for practical reasons.
- Know where emergency stop buttons, shutoff valves, and fire extinguishers are located.
- Wear hearing protection to protect against hearing loss that can be caused by exposure to vacuum exhaust port noise over long periods of time.
Nordson EFD Product Safety Statement (continued)

Fire Safety
To prevent a fire or explosion, follow these instructions:

- Shut down all equipment immediately if you notice static sparking or arcing. Do not restart the equipment until the cause has been identified and corrected.
- Do not smoke, weld, grind, or use open flames where flammable materials are being used or stored.
- Do not heat materials to temperatures above those recommended by the manufacturer. Make sure heat monitoring and limiting devices are working properly.
- Provide adequate ventilation to prevent dangerous concentrations of volatile particles or vapors. Refer to local codes or the SDS for guidance.
- Do not disconnect live electrical circuits when working with flammable materials. Shut off power at a disconnect switch first to prevent sparking.
- Know where emergency stop buttons, shutoff valves, and fire extinguishers are located.

Preventive Maintenance
As part of maintaining continuous trouble-free use of this product, Nordson EFD recommends the following simple preventive maintenance checks:

- Periodically inspect tube-to-fitting connections for proper fit. Secure as necessary.
- Check tubing for cracks and contamination. Replace tubing as necessary.
- Check all wiring connections for looseness. Tighten as necessary.
- Clean: If a front panel requires cleaning, use a clean, soft, damp rag with a mild detergent cleaner. DO NOT USE strong solvents (MEK, acetone, THF, etc.) as they will damage the front panel material.
- Maintain: Use only a clean, dry air supply to the unit. The equipment does not require any other regular maintenance.
- Test: Verify the operation of features and the performance of equipment using the appropriate sections of this manual. Return faulty or defective units to Nordson EFD for replacement.
- Use only replacement parts that are designed for use with the original equipment. Contact your Nordson EFD representative for information and advice.
Important Disposable Component Safety Information

All Nordson EFD disposable components, including syringe barrels, cartridges, pistons, tip caps, end caps, and dispense tips, are precision engineered for one-time use. Attempting to clean and re-use components will compromise dispensing accuracy and may increase the risk of personal injury.

Always wear appropriate protective equipment and clothing suitable for your dispensing application and adhere to the following guidelines:

- Do not heat syringe barrels or cartridges to a temperature greater than 38°C (100°F).
- Dispose of components according to local regulations after one-time use.
- Do not clean components with strong solvents (MEK, acetone, THF, etc.).
- Clean cartridge retainer systems and barrel loaders with mild detergents only.
- To prevent fluid waste, use Nordson EFD SmoothFlow™ pistons.

Action in the Event of a Malfunction

If a system or any equipment in a system malfunctions, shut off the system immediately and perform the following steps:

1. Disconnect and lock out system electrical power. If using hydraulic and pneumatic shutoff valves, close and relieve pressure.
2. For Nordson EFD air-powered dispensers, remove the syringe barrel from the adapter assembly. For Nordson EFD electro-mechanical dispensers, slowly unscrew the barrel retainer and remove the barrel from the actuator.
3. Identify the reason for the malfunction and correct it before restarting the system.

Disposal

Dispose of equipment and materials used in operation and servicing according to local codes.
Nordson EFD Product Safety Statement (continued)

Equipment-Specific Safety Information

The following safety information is specific to the Liquidyn P-Jet SolderPlus valve.

⚠️ CAUTION

Do not dry cycle the valve! The valve be damaged if it is operated without fluid, causing leakage and a poor seal. Precise dispensing can no longer be guaranteed if this occurs.

General
• Before use, read the complete operating instructions and all safety instructions to ensure safe and correct usage.
• Observe all safety instructions.

Intended Use
• The micro-dispensing system is for indoor use only.
• Do not use the micro-dispensing system in an explosive atmosphere or with explosive materials.

Fluid Compatibility
• Use only for the micro-dispensing of low- to medium-viscosity fluids or pastes.
• Ensure that all fluid carrying parts and sealings are resistant to the dispensing material used.

Operating Conditions
• Operate heaters (optional) within the approved temperature range only. Refer to “Specifications” on page 12.
• Use only heaters that are distributed by Nordson EFD specifically for this micro-dispensing valve.
• Adhere to the maintenance intervals specified under “Service” on page 30.
• Do not subject the valve needle to force, knocks, or impact.
• Avoid long shutdown periods with the system switched on.
• Do not operate the valve in a dry condition (without dispensing material).
Specifications

NOTE: Specifications and technical details are subject to engineering change without prior notification.

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Refer to “Dimensions” on page 42.</td>
</tr>
<tr>
<td>Weight</td>
<td>270.0 g (9.5 oz)</td>
</tr>
<tr>
<td>Maximum fluid pressure</td>
<td>100 bar (1450 psi)</td>
</tr>
<tr>
<td>Fluid inlet</td>
<td>M8 x 1, flat sealing</td>
</tr>
<tr>
<td>Mounting</td>
<td>M3 x 25</td>
</tr>
<tr>
<td>Maximum operating frequency</td>
<td>100Hz</td>
</tr>
<tr>
<td>Pulse time</td>
<td>Starting at 2 ms</td>
</tr>
<tr>
<td>Input voltage</td>
<td>24 VDC, PLC compatible</td>
</tr>
<tr>
<td>Power consumption</td>
<td>0.5 Amp (peak 5.0 Amp)</td>
</tr>
<tr>
<td>Input air pressure</td>
<td>3.0–8.0 bar (44–116 psi)</td>
</tr>
<tr>
<td>Maximum valve temperature</td>
<td>40° C (104° F)</td>
</tr>
<tr>
<td>Maximum nozzle heater temperature</td>
<td>90° C (194° F)</td>
</tr>
<tr>
<td>Fluid body</td>
<td>303 stainless steel</td>
</tr>
<tr>
<td>Heater body</td>
<td>Aluminum</td>
</tr>
<tr>
<td>Humidity</td>
<td>10–80%</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-5–60° C (23–140° F)</td>
</tr>
<tr>
<td>Dispensing volume</td>
<td>From 3 nL (1 oz) per cycle</td>
</tr>
<tr>
<td>Viscosity range</td>
<td>0.5–10,000 mPas (thixotropic)</td>
</tr>
<tr>
<td>Dispensing accuracy</td>
<td>>97% (dispensing tolerance <3%)</td>
</tr>
<tr>
<td>Service life</td>
<td>>100,000,000 cycles</td>
</tr>
<tr>
<td>Product classification</td>
<td>IP65</td>
</tr>
<tr>
<td>Compressed air quality class</td>
<td>Pollution degree DIN ISO 8573-1, class 5</td>
</tr>
<tr>
<td>Approvals</td>
<td>CE*, TÜV</td>
</tr>
</tbody>
</table>

This valve meets the EN 61326-1:2013, FCC Part 15 Subpart B, and ICES-003 Issue 6 product family standard for immunity and emissions when connected to a Nordson EFD Liquidyn controller. Usage with any other controller does not guarantee electromagnetic compatibility (EMC) performance.
Operating Features

The Liquidyn P-Jet SolderPlus micro-dispensing valve is shipped with the components shown under “Unpack the System Components” on page 14, along with any additional configuration selections and accessories. The valve can be uniquely configured to achieve the best dispensing result for your material and application.
Installation

Use this section in tandem with any other system component operating manuals to install all components of the system.

Unpack the System Components

1. Liquidyn P-Jet SolderPlus valve equipped with the following parts:
 - Actuator
 - Steel fluid body
 - 4 mounting screws
 - 2 NBR O-rings (between the tappet rod and fluid body)
 - Steel tappet

2. 2.5 m (8.2 ft) M8 valve cable with 3-pin plug

3. Open-end wrench for 3.5 mm tappet rod
 Open-end wrench for 6 mm tappet nut
 Hex wrench for 1.5 mm adjustment knob

 (Not shown) (ordered and shipped separately)
 SolderPlus solder paste and optional components
 Tappet alignment tool
 Concentricity tool
Assemble the Valve (Initial Assembly)

Follow this procedure to assemble the valve before mounting it. You will need the following items:

- Hex wrench, size 10
- Hex wrench, size 2.5
- Nozzle
- Nozzle retaining nut
- **Optional:** Heater key (if installing a nozzle heater)

Refer to “Replacement Parts” on page 36 for component part numbers.

NOTE: The steps provided in this manual are based on a valve with a syringe barrel.

1. • Remove the protective covers.
 - **Optional:** To use a different fluid body and / or tappet, go to “Change the Fluid Body or Tappet (Optional)” on page 16. Return here to continue.

2. • Install the nozzle.

3. • **Recommended:** Install a nozzle heater.

 NOTE: The nozzle heater is an optional component; however, it is included as a step in this manual because most solder applications require a nozzle heater.

 NOTE: The nozzle is only minimally secured by a nozzle heater. The nozzle is fully secured by the retaining nut.

4. • Position the nozzle retaining nut in the nozzle heater and then use the heater key to tighten the nozzle retaining nut.

Continued on next page
Assemble the Valve (Initial Assembly) (continued)

5. • By hand, thread the luer lock adapter loosely onto the fluid body, positioning it at a 15° angle from its end position.
• Tighten the nut with a wrench so that the adapter is parallel to the straight axis of the valve.
 Torque: 5 N•m (3.7 ft-lb) maximum

6. • Mount the syringe barrel holder.

7. • Install the syringe barrel and syringe barrel adapter.

Change the Fluid Body or Tappet (Optional)

Follow this procedure to use an optional fluid body or tappet. You will need the following items:
• Replacement fluid body
• Replacement tappet
• Tappet alignment tool
• Barrier grease
• Wooden pick

1. • Unscrew and remove the four screws that secure the fluid body.
• Carefully remove the fluid body without damaging the tappet.

Continued on next page
Change the Fluid Body or Tappet (Optional) (continued)

2. • Loosen the tappet nut with a wrench (6 mm to loosen the tappet nut; 3.5 mm to hold the tappet rod steady).

3. • Press in the tappet with controlled pressure until the clamping sleeve between the tappet and nut loosens. A piece of wood or hard rubber is suitable to press against. • Remove the tappet.

4. Turn the force screw fully counterclockwise as follows (to eliminate any spring force on the tappet):
 • Completely loosen the raster element.
 • Turn the force screw counterclockwise until it stops.
 • Completely tighten the raster element to secure the force screw.

5. • Insert the replacement tappet until the tappet stops.

6. • Insert the tappet alignment tool into the fluid body and around the tappet; push the tool in until it is firmly held in place by its tapered sides.

7. • Using the same technique described in step 2, tighten the tappet nut (while the tappet alignment tool is still installed).
 Torque: 0.1 N•m (0.7 ft-lb) maximum
 • Remove the tappet alignment tool from the fluid body.

Continued on next page
Change the Fluid Body or Tappet (Optional) (continued)

8. • Using a wooden pick, apply a small amount of barrier grease at the base of the replacement tappet and distribute this around the annulus.

9. • Install a new O-ring (standard material: NBR) on the tappet and press the O-ring down into the greased annulus.
 • Distribute the grease evenly so that the entire sealing surface of the O-ring is covered.
 • Install the second (grease-free) O-ring on the tappet on top of the initial O-ring.

10. • Mount the initial or replacement fluid body precisely over the tappet without tilting it. Tighten the screws crosswise. Torque: 0.8 N•m (5.9 ft-lb) maximum

11. • Continue to the next procedure to set the tappet concentricity.

Set the Tappet Concentricity

Follow this procedure to set the tappet concentricity (common center) as follows:

• Anytime the tappet is changed or replaced.
• Whenever the dispensing performance deteriorates.

You will need the following items:

• Concentricity tool
• Nozzle retaining nut

Refer to “Tools and Supplies” on page 41 for component part numbers.

1. Turn the stroke adjustment knob fully counterclockwise as follows (so that it is not forcing the tappet into a forward position):
 • Use a hex wrench to loosen the locking set screw.
 • Turn the stroke adjustment knob counterclockwise until it stops.
 • Tighten the locking set screw to secure the knob.

Continued on next page
Set the Tappet Concentricity (continued)

2. If you have not already done so, turn the force screw fully counterclockwise as follows (to eliminate any spring force on the tappet):
 - Completely loosen the raster element.
 - Turn the force screw counterclockwise until it stops.
 - Completely tighten the raster element to secure the force screw.

3. • Remove the nozzle, if present.
 • Install the concentricity tool onto the fluid body where the nozzle would mount.
 • Install the nozzle retaining nut to secure the concentricity tool.

4. • Turn the force screw one (1) click counterclockwise so that there is a low spring force pushing the tappet onto the concentricity tool.

5. • Place the valve upright under a measuring system (such as a digital microscope with measurement capability).
 • Adjust the magnification to 100 times (100x) and focus on the flat surface of the tappet, which is at the same height as the concentricity tool.

6. • Use the measuring system’s center-to-center tool to measure the concentricity of the tappet to the inside ring of the concentricity tool.
 NOTE: The three holes in the concentricity tool act as windows to view the inner diameter.

7. • Repeat the concentricity measurement three times by repeating steps 1–6 (including turning the stroke adjustment knob back when removing / installing the concentricity tool).
 • Average all three measurements. An acceptable tappet concentricity is <75 µm.
Install a Nozzle Heater (Optional)

The nozzle heater is an optional component; however, because most solder applications require a nozzle heater, it was included as a step under “Assemble the Valve (Initial Assembly)” on page 15. This section is included for additional reference as needed.

The illustration below shows the installation of a nozzle heater. A nozzle heater controls the temperature of the material in the nozzle. The nozzle is secured minimally by the nozzle heater with an elastomer (heater O-ring) between it and the valve. The nozzle is fully secured by the retaining nut.

You will need the following items:
- Nozzle
- Nozzle heater
- Nozzle heater O-ring (NBR or EPDM)
- Retaining nut
- Heater key
- Heater cable

Refer to “Nozzle Heaters” on page 39 for component part numbers.

NOTES:
- The nozzle retaining nut predominantly secures and seals the nozzle in place. The heater remains in contact with the retaining nut through pressure supplied by a heater O-ring, which creates a partial space between the heater and the fluid body. This ensures thermal contact and allows the heater to rotate slightly even when the retaining nut is fully tightened.
- The image below is based on a Liquidyn P-Jet valve with a standard nozzle heater. The mounting process is the same for all valves.

NOTES:
- The electrical connection for the heater is supplied through the provided heater cable.
- To attach or release the heater cable, loosen or tighten the knurled nut by hand. Be sure to connect the heater cable plug in the correct orientation.
Mount the Valve

Mount the valve using either of the following options.

Standard Mounting

Secure the valve using two M3 x 25 hex screws (customer-supplied). Four mounting holes are available to allow for adjustment.

Quick-Mounting

An optional quick-mounting bracket is available for faster valve removal and installation. Once the valve is installed using the quick-mounting components, it can be easily removed or installed using the quick-release fastener. Refer to "Quick-Release Valve Mounting Components" on page 38 for the quick-mounting kit part number.

You will need the following items:

- Vibration decoupler
- Quick-release fastener
- 2 M4 hex screws (minimum length: 10 mm)
- Hex wrench, size 2.5
- Hex wrench, size 3.0
Connect Cables

Connect the M8 valve cable and other communication cables as applicable for your system to control the operation of the valve. The diagram below shows some typical system control setups.

NOTE: The valve is triggered by a square-wave signal (24 VDC). The length of the pulse from the control signal defines the opening time of the valve and can be set from 2 ms to infinity. Most PLC systems make use of high performance transistor outputs which are suitable to control the valve directly. The valve is electrically connected to the control system via the supplied M8 valve cable.

Key:
- T10 = Liquidyn T10 or T20 heater controller
- V10 = Liquidyn V10, V10M, V10D, or M10D controller
- V200 = Liquidyn V200 controller
- PLC = Higher-level controller
Connect the Air Supply

To achieve consistent dispensing results, the process parameters must be kept constant. The valve has two air pressure connections (operating pressure and fluid pressure) which must be continuously supplied with air pressure.

The level of pressure depends on the respective process. Each valve must be separately connected to a continuous air supply adjustable through a precision pressure regulator. To keep the operating pressure stable and constant, use a pneumatic accumulator (at least 0.4 liter volume).

For an air supply connection diagram, refer to “Installation Example” on page 24.

⚠️ CAUTION

Ensure that the pressure limit values for the syringe barrel and air pressure tubing are not exceeded.

1. For the operating pressure, connect 6 mm OD tubing to the plug-in connector on the side of the valve.
2. For the fluid pressure, connect 4 mm or 6 mm tubing to the syringe barrel adapter.

NOTE: Nordson EFD recommends installing a precision pressure regulator with a maximum control tolerance of 0.2%.
Installation Example

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumatic connections</td>
<td>• Compressed air tube, 6 mm OD
• Dry, filtered air pressure, oil-free
• Filter grade: 40 µm
• Regulated by a precision pressure regulator
• Operating pressure limit: 3–8 bar (44–116 psi)</td>
</tr>
<tr>
<td>Fluid connection</td>
<td>• Syringe barrel accessories with compressed 4 mm air tubing
• Fluid pressure limit: 100 bar (1450 psi)</td>
</tr>
<tr>
<td>Electrical connections</td>
<td>• Supplied M8 valve cable from the valve to a Liquidyn valve controller or a higher-level controller, such as a PLC
• Power supply: 24 VDC
• Power consumption: 0.5 Amp (peak 5.0 Amp)</td>
</tr>
<tr>
<td>Optional</td>
<td>• Nozzle heater (controlled by a temperature control unit)
• Process equipment (such as a laser light barrier for dot recognition or a cleaning station for nozzles)</td>
</tr>
</tbody>
</table>

Liquidyn P-Jet SolderPlus valve connection diagram
Initial Startup

This section provides recommendations for system startup and operation. System startup for the valve depends on the control unit. If you are using a Nordson EFD Liquidyn valve controller, obtain the controller manual. If you are using higher-level controller, the control is set up by the customer.

⚠️ CAUTION

Before switching on the system, ensure that all electrical and pneumatic connections are connected correctly and fully functioning.

1. Check electrical and pneumatic connections.
2. Switch on the control unit.
3. Turn on the air supplies.
4. **(Solder paste applications only)** If using the P-Jet SolderPlus valve in a solder paste dispensing application, refer to “Appendix C, Special Instructions for Solder Paste Dispensing” on page 47 for steps that apply only to solder paste dispensing.
5. **(All applications except solder paste applications)** Use the following actions to set up and test the valve operation using the control system manual or the customer-supplied control system and documentation. Refer to “Parameter Settings” on page 26 for information and recommendations on system setup.
 a. Trigger the valve until the material to be dispensed leaves the nozzle opening. Place a collecting container or paper sheet underneath the valve.
 b. Clean the nozzle tip with a lint-free cloth.
 c. Set the distance between the nozzle and the target (such as a sample product).
 d. Initiate several dispense cycles to test the valve operation.
 e. Evaluate the dispensing results and make adjustments until the desired dispensing performance is achieved. Refer to “Parameter Settings” on page 26 and to “Recommended Setup Adjustments” on page 27 for detailed information on system setup and adjustment.
6. To ensure optimal valve performance, maintain the system as described under “Service” on page 30.
Parameter Settings

The following table provides recommended settings for initial startup and testing of the valve operation. Detailed information on each parameter is shown after the table.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Time</td>
<td>The electrical trigger pulse of the valve, starting at 2 ms.</td>
<td>6 ms starting value</td>
</tr>
<tr>
<td>Frequency</td>
<td>The number of tappet movements per second.</td>
<td>10Hz starting value</td>
</tr>
<tr>
<td>Fluid pressure</td>
<td>The flow rate of the material supply; should be set to produce a consistent volume.</td>
<td>1.0 bar (14.5 psi) starting value</td>
</tr>
<tr>
<td>Operating pressure</td>
<td>The setting of the tappet force screw; can be adjusted to fine-tune the dispensing result.</td>
<td>6 bar (87 psi) starting value</td>
</tr>
<tr>
<td>Stroke adjustment</td>
<td>The setting of the stroke adjustment knob, which changes the vertical movement of the tappet.</td>
<td>Do not adjust</td>
</tr>
<tr>
<td>Nozzle heater temperature</td>
<td>If applicable, the temperature setting for the nozzle heater.</td>
<td>36 °C (98.8 °F) when open</td>
</tr>
</tbody>
</table>

Pulse Time

The Pulse Time corresponds to the electrical trigger pulse, or opening time, of the valve, which is the primary control of deposit size. The following conditions apply to Pulse Time:

- The pneumatically actuated dispensing nozzle remains open as long as it is triggered.
- The dispensing volume is affected by the adjustment of the triggering pulse.
- The minimum Pulse Time is 2 ms. The valve cannot operate correctly at Pulse Times below 2 ms.

Frequency

Frequency is the number of tappet movements per second. A dispensing cycle consists of the Pulse Time and the pause time.

<table>
<thead>
<tr>
<th>Physical Quantity</th>
<th>Formula</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (f)</td>
<td>(f = 1 / T)</td>
<td>1Hz (hertz) = 1 / s</td>
</tr>
<tr>
<td>Dispensing cycle</td>
<td>(T = 1 / f)</td>
<td>1 s (second) = 1 / Hz</td>
</tr>
</tbody>
</table>

1 ms = 0.001 s (second)

Higher-level controllers may not allow you to enter the exact frequency. If such cases, frequency is set using the length of the pulse and the pause time.
Parameter Settings (continued)

Frequency (continued)

EXAMPLE:

- To achieve 50Hz with a 2 ms Pulse Time, set the pause time to 18 ms.
- To achieve 50Hz with a 10 ms Pulse Time, set the pause time to 10 ms.

Fluid Pressure

The fluid pressure must be properly set to ensure that material is supplied at a consistent volume. Consider the following when setting the fluid pressure:

- The fluid pressure must stay within the tubing pressure specifications.
- Fluid supply tubing must be resistant to chemicals.
- The fluid pressure must be high enough for the material to exit the nozzle opening.
- The required fluid pressure will vary depending on the material, its viscosity, and the ambient temperature.
- Decreasing the fluid pressure too much may, in extreme cases, prevent proper deposit separation from the nozzle.
- Prevent pressure fluctuations. Note that pressure loss due to friction occurs as material flows through the material delivery components.

Recommended Setup Adjustments

The following table provides recommended adjustments to help you quickly find optimum system settings for your application. Because of the diversity in materials that can be dispensed, the effectiveness of these recommendations can vary, but they serve to share our experience with you.

<table>
<thead>
<tr>
<th>Goal</th>
<th>Operating Pressure</th>
<th>Tappet Force Screw Adjustment</th>
<th>Fluid Pressure</th>
<th>Heater (Temperature)</th>
<th>Nozzle Orifice Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smaller dots</td>
<td>Not applicable</td>
<td>Down</td>
<td>Down</td>
<td>Down</td>
<td>Down</td>
</tr>
<tr>
<td>Bigger dots</td>
<td>Not applicable</td>
<td>Up</td>
<td>Up</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>Prevent satellites</td>
<td>Down</td>
<td>Up</td>
<td>Down</td>
<td>Down</td>
<td>Up</td>
</tr>
<tr>
<td>Prevent residue at the nozzle</td>
<td>Up</td>
<td>Down</td>
<td>Down</td>
<td>Up</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Key:

Down = lower operating pressure or temperature / tighten screw / smaller diameter
Up = greater operating pressure or temperature / loosen screw / larger diameter
Tappet Adjustment

The valve is equipped with two mechanisms for tappet adjustment:

- **Force screw (non-slip knurled screw)** — sets the dynamic of the tappet movement.
- **Stroke adjustment knob (fine diamond knurl screw)** — sets the tappet stroke.

The factory settings for both mechanisms are appropriate for most applications. However, depending on the dispensing task and on the material, each can be adjusted to fine-tune the dispensing result.

CAUTION

When dispensing solder paste, do not adjust the tappet of a wetted and closed valve. Doing so can grind material into the nozzle, causing nozzle clogging and other related problems. Refer to “Appendix C, Special Instructions for Solder Paste Dispensing” on page 47 for steps that apply only to solder paste dispensing.

Adjusting the Force Screw

Adjust the raster element (see NOTE below) and then turn the force screw clockwise (as seen from an aerial view) to change the dynamic of the tappet movement. In most cases, simultaneously increasing the operating pressure is helpful.

NOTE: Use the spring-loaded raster element as follows:

- Completely loosen the element to turn the force screw.
- Half-tighten the element to hear a clicking sound when you turn the force screw.
- Completely tighten the element to secure the force screw.

To return the force screw to the factory setting:

1. Completely loosen the raster element.
2. Turn the force screw counterclockwise until it stops.
3. Turn the force screw clockwise for 25 clicks (15 clicks = one full turn).
4. Completely tighten the raster element to secure the force screw.
Tappet Adjustment (continued)

Adjusting the Stroke

⚠️ **CAUTION**

When dispensing solder paste, do not adjust the tappet of a wetted and closed valve. Doing so can grind material into the nozzle, causing nozzle clogging and other related problems. Refer to “Appendix C, Special Instructions for Solder Paste Dispensing” on page 47 for steps that apply only to solder paste dispensing.

⚠️ **CAUTION**

Do not keep turning the stroke adjustment knob after you feel the torque elevate. Doing so can damage the valve.

1. Use a hex wrench to loosen the locking set screw.
2. Turn the stroke adjustment knob clockwise (as seen from an aerial view) to reduce the stroke.
3. Tighten the locking set screw to secure the knob.
 Torque: 0.3 N•m (2.7 in.-lb) maximum

NOTE: For very fine adjustment of the tappet stroke, loosen the locking screw 2 turns, turn the stroke adjustment knob $+90^\circ / -90^\circ$ from its factory position, and observe the deposit cut-off or shape. When the desired dispensing result is achieved, tighten the locking screw. Note that in this situation the maintenance intervals described under “Service” on page 30 will need to be adapted depending on the dispensed material and on the stroke.

To return the stroke adjustment knob to the factory setting:

1. Loosen the locking set screw.
2. Turn the stroke adjustment knob clockwise (as seen from an aerial view) until the stroke stop lies flat against the valve tappet. This can be felt when the torque elevates.
3. Turn the knob 270° counterclockwise.
4. Tighten the locking set screw to prevent accidental turning of the knob.
 Torque: 0.3 N•m (2.7 in.-lb) maximum
Service

Regularly perform maintenance on your micro-dispensing valve. Regular maintenance will save you cost-intensive repairs and is a requirement for long valve lifespan. Nordson EFD valves are designed to be maintained easily. All the material-carrying parts can be removed, cleaned, and maintained by the customer.

NOTE: Customers should service only the material-carrying components. For any service not related to the material-carrying components, contact your Nordson EFD support representative.

Recommended Maintenance Schedule

Cleaning and maintenance intervals vary based on your operating conditions (dispensing frequency, frequency of use, dispensing material, etc.). The following table provides recommendations only.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Perform Weekly Valve Cleaning</th>
<th>Perform Daily Valve Cleaning (or at the end of the pot life)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispensing frequency</td>
<td>Less than 20Hz</td>
<td>Greater than 20Hz</td>
</tr>
<tr>
<td>Dispensing material</td>
<td>• Oil</td>
<td>• Dispersions</td>
</tr>
<tr>
<td></td>
<td>• Grease</td>
<td>• Reactive adhesives</td>
</tr>
<tr>
<td></td>
<td>• UV glue</td>
<td>• Epoxies</td>
</tr>
</tbody>
</table>

NOTE: The sealing effectiveness of the tappet O-rings can be compromised if the replacement intervals are too long (causing worn or damaged O-rings). Worn or damaged O-rings can cause dispensing material to enter the drive system, thus compromising valve operation.

Valve Cleaning

You will need the following items:

- Protective clothing
- Hex wrench, size 10
- Hex wrench, size 2
- Toothpick
- Cleaning material
- Container
- Compressed air
- Lint-free cloth
- Optional: Ultrasonic bath
- Optional: Microscope

⚠️ WARNING

- Before any component change or service activity, relieve air pressure from the fluid reservoirs and switch off heater control (if applicable).
- Disconnect the system from the power supply before beginning work on electrical or electronic system components or opening the switchgear cabinet.
- Disconnect the mains power plug to isolate the system from the power supply. Check for safe isolation from the power supply using suitable measuring instruments. Only perform maintenance work on a system that is safely isolated from the power supply.
- Wear appropriate personal protective equipment, including, but not limited to, gloves, safety goggles, and breathing protection.
- Switch off the compressed air supply before disconnecting the system from the pneumatic connections.
- Read and understand the SDS for the dispensing material and the risk of the associated health hazards so that suitable safety measures can be taken for the correct handling of the dispensing material.
Service (continued)

Shut Down the System
1. Shut off the air supply.
2. Switch off the power of every control unit, then switch off power to the valve.
3. Disconnect all tubing and cables.
4. Disconnect the material supply.
5. Continue with the procedures in this section to disassemble and clean the valve.

Disassemble the Valve

CAUTION
Do not open the color-sealed screws. Unauthorized modifications and the breaking of the sealed screws void the warranty and guarantee.

1. Remove the syringe barrel and mounting bracket from the valve.
2. Disconnect the luer lock adapter from the fluid body.
3. Use the heater key to remove the nozzle retaining nut.

Continued on next page
Service (continued)

Disassemble the Valve (continued)

4. • Remove the nozzle from the fluid body.

5. • Unscrew and remove the four screws that secure the fluid body.
 • Carefully remove the fluid body without damaging the tappet.

6. • Use a toothpick to remove the O-ring from the fluid body.

7. • Remove the second O-ring from the tappet.
 • Clean the tappet and annulus with lint-free paper.

Clean the Valve Components

CAUTION

Never use solvents or cleaning agents that contain halogenated hydrocarbons (such as trichloroethane, methyl chloride, or dichloromethane). Halogenated hydrocarbons can dissociate, causing an explosion upon contact with aluminum and galvanized surfaces. Before using a solvent or cleaning agent, check its ingredients.

1. • Submerge all the components in a container filled with cleaning fluid.
 • After 3–5 minutes, remove the components from the container and clean them with a lint-free cloth.

CAUTION

Do not damage the holes on the sealing faces of the material carrying components.

• **Optional:** Use an ultrasonic bath to clean the components.

Continued on next page
Service (continued)

Clean the Valve Components (continued)

2. • Use the pipe cleaners from the cleaning kit to clean the disassembled components (luer lock adapter, nozzle retaining nut, nozzle, fluid body, and the tappet if needed).

3. • Use compressed air to clear any remaining cleaning fluid from the parts.

CAUTION

Do not damage the holes on the sealing faces of the material carrying components.

• Examine the cleaned components for any remaining residue (especially the nozzle, which should be examined under a microscope).

• If the parts are still contaminated, repeat the cleaning process.

Assemble the Valve (After Cleaning)

Follow this procedure to assemble a valve after cleaning it. You will need the following items:

• Hex wrench, size 10
• Hex wrench, size 2.5
• Nozzle
• Nozzle retaining nut
• O-rings and barrier grease
• Wooden pick
• **Optional:** Heater key (if installing a nozzle heater)

NOTE: The steps provided in this manual are based on a valve with a syringe barrel.

1. • Using a wooden pick, apply a small amount of barrier grease at the base of the tappet and distribute this around the annulus.

 NOTE: When dispensing instant adhesive (cyanoacrylates), Nordson EFD recommends petroleum jelly for use as the barrier grease. Contact Nordson EFD for assistance in dispensing cyanoacrylates.

2. • Install a new O-ring (standard material: NBR) on the tappet and press the O-ring down into the greased annulus.

 • Distribute the grease evenly so that the entire sealing surface of the O-ring is covered.

 • Install the second new (grease-free) O-ring on the tappet on top of the initial O-ring.

Continued on next page
Service (continued)

Assemble the Valve (After Cleaning) (continued)

3. • Mount the fluid body precisely over the tappet without tilting it. Tighten the screws crosswise. Torque: 0.8 N•m (5.9 ft-lb) maximum
 • **Optional:** To use a different tappet, go to “Change the Fluid Body or Tappet (Optional)” on page 16. Return here to continue.

4. **CAUTION**

 If using the P-Jet SolderPlus valve in a solder paste dispensing application, refer to “Appendix C, Special Instructions for Solder Paste Dispensing” on page 47 for steps that apply only to solder paste dispensing.
 • Install the nozzle.

5. • **Recommended:** Install a nozzle heater.

 NOTE: The nozzle heater is an optional component; however, it is included as a step in this manual because most solder applications require a nozzle heater.

 NOTE: The nozzle is only minimally secured by a nozzle heater. The nozzle is fully secured by the retaining nut.

6. • Position the nozzle retaining nut in the nozzle heater and then use the heater key to tighten the nozzle retaining nut.

7. • By hand, thread the luer lock adapter loosely onto the fluid body, positioning it at a 15° angle from its end position.
 • Tighten the nut with a wrench so that the adapter is parallel to the straight axis of the valve. Torque: 5 N•m (3.7 ft-lb) maximum

Continued on next page
Service (continued)

Assemble the Valve (After Cleaning) (continued)

8. • Mount the syringe barrel holder.

9. • Install the syringe barrel and syringe barrel adapter.
 • Mount the valve and restore the system to normal operation.

Solder Paste

Nordson EFD’s comprehensive line of ISO-certified solder paste solutions include high quality printing and dispensing soldering pastes that meet the most stringent application requirements. Visit www.nordsonefd.com/SolderPlusPaste for details or to request a free sample.

Part Number

<table>
<thead>
<tr>
<th>Part #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7825923</td>
<td>Liquidyn P-Jet SolderPlus actuator</td>
</tr>
</tbody>
</table>
Replacement Parts

Valve Components

Refer to “Operating Features” on page 13 for the location of the these components in the valve.

<table>
<thead>
<tr>
<th>Part #</th>
<th>Description</th>
<th>Material</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>7826092*</td>
<td>O-rings (between the tappet and fluid body)</td>
<td>NBR</td>
<td></td>
</tr>
<tr>
<td>7826093*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7826080</td>
<td>Steel needle nozzle, 250 μm</td>
<td>EPDM</td>
<td></td>
</tr>
<tr>
<td>7826081</td>
<td></td>
<td>Perlast</td>
<td></td>
</tr>
<tr>
<td>7826082</td>
<td></td>
<td>Viton</td>
<td></td>
</tr>
<tr>
<td>7826084</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7825037*</td>
<td>Steel fluid body</td>
<td>303 stainless steel</td>
<td></td>
</tr>
<tr>
<td>7825182</td>
<td>2.5 m (8.2 ft) M8 valve cable</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>

*Other selections are available. Contact your Nordson EFD application specialist for assistance.

Nozzle and Nozzle Retaining Nuts

<table>
<thead>
<tr>
<th>Nozzle Type</th>
<th>Part #</th>
<th>Description</th>
<th>Material</th>
<th>Compatibility</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needle</td>
<td>7825919</td>
<td>Steel needle nozzle, 250 μm</td>
<td>303 stainless steel</td>
<td>For all flat nozzles and steel-needle nozzles</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: This nozzle is specially designed for filled materials.

The retaining nut secures the nozzle to the valve. The choice of retaining nut depends on the type of nozzle and whether or not a nozzle heater is installed. Contact your Nordson EFD application specialist for assistance.

<table>
<thead>
<tr>
<th>Nozzle Type</th>
<th>Part #</th>
<th>Description</th>
<th>Material</th>
<th>Compatibility</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without heater</td>
<td>7825042*</td>
<td>Hexagon retaining nut</td>
<td>Stainless steel</td>
<td>For all flat nozzles and steel-needle nozzles</td>
<td></td>
</tr>
<tr>
<td>With heater</td>
<td>7825051*</td>
<td>Stainless-steel retaining nut</td>
<td>Stainless steel</td>
<td>For the standard nozzle heater (compatible with all nozzle types)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7825052*</td>
<td>Brass retaining nut</td>
<td>Brass</td>
<td>For the standard nozzle heater (compatible with all nozzle types)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7825047*</td>
<td>Stainless-steel retaining nut</td>
<td>Stainless steel</td>
<td>For the small nozzle heater (compatible with all nozzle types)</td>
<td></td>
</tr>
</tbody>
</table>

*Other selections are available. Contact your Nordson EFD application specialist for assistance.
Replacement Parts (continued)

Syringe Barrels and Accessories

Many syringe barrel sizes and accessories are available. Contact your Nordson EFD application specialist for assistance. For a complete list of Optimum components, see www.nordsonefd.com/Optimum.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Configuration Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Luer lock adapter for 3cc to 70cc syringe barrels</td>
<td>• Steel</td>
</tr>
</tbody>
</table>
| 2 | Syringe barrel | • Normal
| | | • Light-proof
| | | • UV-blocker |
| 3 | Piston | • Normal
| | | • UV-blocker |
| 4 | Syringe barrel holder | |
| 5 | Syringe barrel adapter for 4 mm OD tube connection | • Aluminum |
| 6 | O-ring (NBR) for syringe barrel adapter | |

Typical Luer Lock Fittings

<table>
<thead>
<tr>
<th>Part #</th>
<th>Description</th>
<th>Material</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>7825120*</td>
<td>Steel luer lock adapter for syringe barrels</td>
<td>Stainless steel</td>
<td></td>
</tr>
</tbody>
</table>

*Other selections are available. Contact your Nordson EFD application specialist for assistance.
Accessories

Quick-Release Valve Mounting Components

When a valve is installed using these components, it can be quickly and easily removed and reinstalled. Refer to “Quick-Mounting” on page 21 for installation instructions.

<table>
<thead>
<tr>
<th>Part #</th>
<th>Description</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>7825018</td>
<td>Vibration decoupler</td>
<td></td>
</tr>
<tr>
<td>7825020</td>
<td>Quick-release fastener</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>Two (2) M4 hex screws (minimum length: 10 mm)</td>
<td>Customer supplied</td>
</tr>
</tbody>
</table>

Precision Pressure Regulator

Nordson EFD recommends a dry, oil-free, filtered air supply (40 µm filter grade).

<table>
<thead>
<tr>
<th>Part #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7825268</td>
<td>Precision pressure regulator</td>
</tr>
</tbody>
</table>
Accessories (continued)

Nozzle Heaters

Many materials can easily be dispensed without preheating. However, it is often advisable to preheat highly viscous materials just before application to lower the viscosity. Doing so can prevent variations in viscosity. The use of a nozzle heater guarantees a constant temperature of the material to be dispensed at the nozzle. Contact your Nordson EFD application specialist for assistance.

A nozzle heater can be installed on the valve in place of the retaining nut. The heater can be controlled using a separate temperature controller (such as the Liquidyn T10) or by the Liquidyn V200 controller.

NOTES:

• Nozzle heater O-rings are available in NBR or EPDM. Refer to “Nozzle Heater O-Rings” on page 40 for part numbers.

• A special heater key is required for installation. Refer to “Heater Key” on page 40 for the part number.

• A nozzle retaining nut suitable for either a standard or small nozzle heater is required. Refer to “Nozzle and Nozzle Retaining Nuts” on page 36 for nozzle heater retaining nut part numbers.

<table>
<thead>
<tr>
<th>Heater Type</th>
<th>Heating Capability</th>
<th>Nozzle Heater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>Up to 90° C (194° F)</td>
<td></td>
</tr>
<tr>
<td>Small (a small heater has a low-profile height and is less thick overall)</td>
<td>Up to 90° C (194° F)</td>
<td></td>
</tr>
</tbody>
</table>
Accessories (continued)

Nozzle Heater Kits

NOTE: These nozzle heaters include a flange suitable for mounting the Laser Light Barrier. Refer to “Nozzle Heater Cables” for suitable cables.

<table>
<thead>
<tr>
<th>Part #</th>
<th>Description</th>
<th>Material</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>7825155</td>
<td>Nozzle heater kit, small, M5, 90-degree plug</td>
<td>n/a</td>
<td>The kit includes the heater element, retaining nut, plug, O-ring, and heater key.</td>
</tr>
<tr>
<td>7825149</td>
<td>Nozzle heater kit, standard, M5, straight plug</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>7825150</td>
<td>Nozzle heater kit, standard, M5, 90-degree plug</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>7825153</td>
<td>Nozzle heater element, small, M5</td>
<td>Aluminum</td>
<td></td>
</tr>
<tr>
<td>7825148</td>
<td>Nozzle heater element, standard, M5</td>
<td>Aluminum</td>
<td></td>
</tr>
<tr>
<td>7825152</td>
<td>Nozzle heater element, standard, M8</td>
<td>Aluminum</td>
<td></td>
</tr>
<tr>
<td>7825157</td>
<td>Nozzle heater element, large, M5</td>
<td>Aluminum</td>
<td>NOTE: This larger heater element heats the material farther up into the supply tubing, allowing more fluid to be heated before it is dispensed.</td>
</tr>
</tbody>
</table>

Nozzle Heater Cables

<table>
<thead>
<tr>
<th>Part #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7825182</td>
<td>2.5 m (8.2 ft) M8 valve cable</td>
</tr>
<tr>
<td>7825183</td>
<td>0.5 m (1.6 ft) M8 valve cable</td>
</tr>
<tr>
<td>7825176</td>
<td>3 m (10 ft) M5 valve cable, straight plug</td>
</tr>
<tr>
<td>7825177</td>
<td>3 m (10 ft) M5 valve cable, 90-degree plug</td>
</tr>
</tbody>
</table>

Nozzle Heater O-Rings

Two types of nozzle heater O-ring are available.

<table>
<thead>
<tr>
<th>Part #</th>
<th>Description</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>7826088</td>
<td>NBR nozzle heater O-ring, 13 x 1.5 mm</td>
<td>NBR</td>
</tr>
<tr>
<td>7826089</td>
<td>NBR nozzle heater O-ring, 13 x 1.5 mm</td>
<td>NBR</td>
</tr>
<tr>
<td>7825235</td>
<td>EPDM nozzle heater O-ring, 13 x 1.5 mm</td>
<td>EPDM</td>
</tr>
</tbody>
</table>

Heater Key

The heater key is required to install the heater retaining nuts.

<table>
<thead>
<tr>
<th>Part #</th>
<th>Description</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>7825209</td>
<td>Heater key</td>
<td></td>
</tr>
</tbody>
</table>
Accessories (continued)

Tools and Supplies

<table>
<thead>
<tr>
<th>Item</th>
<th>Part #</th>
<th>Size / Material</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7825262</td>
<td>1.5 g</td>
<td>Barrier grease for O-rings</td>
</tr>
<tr>
<td></td>
<td>7825263</td>
<td>5.0 g</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7825205</td>
<td>0.12 mm</td>
<td>Nozzle cleaning probes</td>
</tr>
<tr>
<td></td>
<td>7825206</td>
<td>0.16 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7825207</td>
<td>0.2 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7825208</td>
<td>0.25 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7825210</td>
<td>n/a</td>
<td>Nozzle pinch tools</td>
</tr>
<tr>
<td></td>
<td>7825192</td>
<td>NBR</td>
<td>Standard cleaning kit (order based on O-ring type)</td>
</tr>
<tr>
<td></td>
<td>7825191</td>
<td>EPDM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7825194</td>
<td>Perlast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7825196</td>
<td>Viton</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7825198</td>
<td>EPDM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7825195</td>
<td>Perlast</td>
<td>Expanded cleaning kit (order based on O-ring type)</td>
</tr>
<tr>
<td></td>
<td>7825197</td>
<td>Viton</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7825924</td>
<td>n/a</td>
<td>Tappet alignment tool, concentricity tool</td>
</tr>
</tbody>
</table>
Technical Data

Dimensions

M8 Valve Cable Pin Positions

<table>
<thead>
<tr>
<th>Pin</th>
<th>Color</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brown</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>Black</td>
<td>Valve (+)</td>
</tr>
<tr>
<td>3</td>
<td>Blue</td>
<td>Valve (-)</td>
</tr>
</tbody>
</table>
Appendix A, About Non-Contact Dispensing

The way a micro-dispensing valve system works for the non-contact dispensing of micro-deposits of fluid is comparable to the way an ink-jet system works. In both systems, a jetted deposit with a spherical head and a thin thread (shaped much like a tadpole) is formed. The dimensions vary depending on the material being dispensed, the process, and the valve settings.

As the deposit is squeezed (or jetted) out of the nozzle opening, the thin thread constricts because of the absence of further fluid supply, the surface tension, and also the continual movement of the deposit, until the deposit finally separates from the nozzle opening. The thread extending from the deposit’s spherical head is either absorbed by the head or separated into at least one more (sometimes many more) smaller head. This depends on the rheological properties of the fluid. At low airflows or in asymmetrical drop-off conditions, a smaller head can land on the substrate next to the main head, creating satellite drops. The thin thread formed at the nozzle output retracts back into the nozzle due to the surface tension and remains at the nozzle output. This residue at the nozzle output can have a negative influence on the dispensing properties of the valve.

The formation of satellite drops and/or nozzle contamination can be reduced or eliminated by using the correct dispensing settings.

Low Viscosity Materials

Try the following to reduce or eliminate the formation of satellite drops: Reduce the pressure supplied to the material by reducing both the fluid pressure and the operating pressure and also by loosening the force screw. Refer to “Adjusting the Force Screw” on page 28.

NOTE: With low viscosity materials, nozzle contamination is usually a minor issue because the subsequent drop removes the residue at the nozzle output.

High Viscosity Materials

With high viscosity materials, the thin thread that retracts back into the nozzle and the resulting nozzle contamination can negatively affect the dispensing process. Try the following to reduce or eliminate nozzle contamination:

• Increase the amount of supplied force. The amount of force depends on the operating pressure and the pretension of the valve tappet. Increasing the amount of force can have a positive effect on the drop-off properties of the deposit and thus improve process reliability. Refer to “Adjusting the Force Screw” on page 28.

• Warm the material being dispensed to reduce the viscosity. This is particularly effective for highly viscous materials. In most cases, the dispensing process reliability of highly viscous materials improves with decreased viscosity. Material warming can be accomplished by installing a nozzle heater. Refer to “Install a Nozzle Heater (Optional)” on page 20.

NOTE: In general, viscosity halves per 10 Kelvin temperature unit increase. Exceptions are silicone oils and greases, although elevating the temperature of these materials can lead to improvement.

Deposit Size

The dispensed volume of a deposit depends on the following parameters:

• Cross section of the valve
• Operating pressure
• Fluid pressure
• Position of the stroke adjustment screw or the force screw.

The smallest possible deposit size is subject to physical limitations. The smaller the deposit, the higher the surface tension in relation to its mass. Thus, the amount of required energy needed for the launch of a deposit raises significantly in relation to its mass. At a certain point, it is physically impossible to transfer the required energy to the dispensed material any longer, particularly in the dispensing of highly viscous materials.
Appendix B, P-Jet SolderPlus Valve Interface Overview

The Liquidyn P-Jet SolderPlus pneumatic micro-dispensing jet valve system is designed for the non-contact dispensing of EFD SolderPlus solder paste. The valve can be operated using a Nordson EFD Liquidyn valve controller or directly by the customer via a 24V input using a customer-supplied controller or a programmable logic controller (PLC).

Electrical Control

The valve is triggered by a square-wave signal (24 VDC). The length of the pulse from the control signal defines the opening time of the valve and can be set from 2 ms to infinity. Most PLC systems make use of high performance transistor outputs which are suitable to control the valve directly. The valve is electrically connected to the control system via the supplied M8 valve cable.

NOTE: To continuously dispense the exact amount with every shot, the Pulse Time must be kept constant. Observe the cycle time of the PLC; if necessary, check the signal with an oscilloscope.

Electrical Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum operating frequency</td>
<td>100Hz</td>
</tr>
<tr>
<td>Pulse Time</td>
<td>Starting at 2 ms</td>
</tr>
<tr>
<td>Input voltage</td>
<td>24 VDC, PLC compatible</td>
</tr>
<tr>
<td>Power consumption</td>
<td>0.5 Amp (peak 5.0 Amp)</td>
</tr>
</tbody>
</table>

Oscillogram (Valve Output) for a Liquidyn P-Jet SolderPlus Valve

![Oscilloscope Diagram](image)

M8 Valve Cable Pin Positions

<table>
<thead>
<tr>
<th>Pin</th>
<th>Color</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brown</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>Black</td>
<td>Valve (+)</td>
</tr>
<tr>
<td>3</td>
<td>Blue</td>
<td>Valve (-)</td>
</tr>
</tbody>
</table>
Appendix B, P-Jet SolderPlus Valve Interface Overview (continued)

Optional Nozzle Heater Control

A nozzle heater can be installed on the valve in place of the retaining nut. The heater can be controlled using a separate temperature controller (such as the Liquidyn T10) or by the Liquidyn V200 controller.

To use another method for controlling the heater, the following information applies:

- The heater comprises a heating coil and a 100-ohm platinum (PT100) resistance temperature detector (RTD).
- The heater can be triggered by most control units.
- Heater power consumption is approximately 1.3 Amps, with 24 VDC used during the heating process.

NOTE: The maximum heater temperature is 90° C (194° F). For consistent dispensing results, keep the control deviation to a minimum (lower than 3%).

Nozzle Heater Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>24 VDC</td>
</tr>
<tr>
<td>Maximum power consumption</td>
<td>1.3 Amp</td>
</tr>
<tr>
<td>Maximum nozzle heater temperature</td>
<td>90° C (194° F)</td>
</tr>
</tbody>
</table>

Nozzle Heater Cable Pin Positions

<table>
<thead>
<tr>
<th>Pin</th>
<th>Color</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brown</td>
<td>Heating coil</td>
</tr>
<tr>
<td>2</td>
<td>White</td>
<td>Heating coil</td>
</tr>
<tr>
<td>3</td>
<td>White</td>
<td>Not assigned</td>
</tr>
<tr>
<td>4</td>
<td>Black</td>
<td>PT100 RTD</td>
</tr>
<tr>
<td>5</td>
<td>Blue</td>
<td>PT100 RTD</td>
</tr>
<tr>
<td>6</td>
<td>White</td>
<td>Not assigned</td>
</tr>
</tbody>
</table>
Appendix B, P-Jet SolderPlus Valve Interface Overview (continued)

Pneumatic Control
To achieve consistent dispensing results, the process parameters must be kept constant. The valve has two air pressure connections (operating pressure and fluid pressure) which must be continuously supplied with air pressure. The level of pressure depends on the respective process. Each valve must be separately connected to a continuous air supply adjustable through a precision pressure regulator. To keep the operating pressure stable and constant, use a pneumatic accumulator (at least 0.4 liter volume).

Operating Pressure Specification
For the operating pressure, connect 6 mm OD tubing to the plug-in connector on the side of the valve.

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input air pressure</td>
<td>3–8 bar (44–116 psi)</td>
</tr>
</tbody>
</table>

Fluid Pressure Specifications
For the fluid pressure, connect 4 mm or 6 mm tubing to the syringe barrel adapter (syringe barrel installations only)

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid pressure range</td>
<td>0.1–4.1 bar (1.5–60 psi)</td>
</tr>
<tr>
<td>Maximum fluid pressure</td>
<td>100 bar (1450 psi)</td>
</tr>
</tbody>
</table>

⚠️ **CAUTION**
Ensure that the pressure limit values for the syringe barrel and air pressure tubing are not exceeded.

NOTE: Nordson EFD recommends installing a precision pressure regulator with a maximum control tolerance of 0.2%.

Valve Configuration Options
- The fluid body can be mounted in other 90-degree positions.
- The operating air pressure connector can be mounted on the opposite side of the valve.
- Standard cartridge centering is 10 cm² (1.6") ; 30 cm² (4.7") can be supplied upon request.
- The valve can be supplied without cartridge centering, in which case a tubing connector is mounted on the valve.
- The material to be dispensed can be supplied through tubing instead of through a syringe barrel. This tubing is connected to the valve using an M8 x 1 cap nut.
Appendix C, Special Instructions for Solder Paste Dispensing

This appendix provides startup, operating, and service instructions that are unique to solder paste dispensing using the P-Jet SolderPlus valve. These instructions are cross-referenced at the applicable locations within this manual.

To Bring Solder Paste into the Nozzle at Initial Startup

Before the initial dispensing of solder paste, material must be introduced into the nozzle.

1. Begin with the following system settings:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Time</td>
<td>1 s (equivalent to 1000 ms + frequency >1Hz)</td>
</tr>
<tr>
<td>Operating pressure (P1)</td>
<td>2 bar (30 psi)</td>
</tr>
<tr>
<td>Operating pressure (P2)</td>
<td>6 bar (87 psi)</td>
</tr>
<tr>
<td>Tappet force screw</td>
<td>55 N (33–35 clicks)</td>
</tr>
<tr>
<td>Tappet stroke</td>
<td>270°</td>
</tr>
<tr>
<td>Nozzle heater temperature</td>
<td>38–40° C (100–104° F)</td>
</tr>
</tbody>
</table>

2. Initiate a signal to the valve.
3. When solder paste flows out of the nozzle, stop the signal to the valve.

To Adjust the Tappet in a Solder Paste Dispensing Application

⚠️ CAUTION

Do not adjust the tappet of a wetted and closed valve. Doing so can grind material into the nozzle, causing nozzle clogging and other problems.

To properly adjust the tappet of a valve used in a solder paste dispensing application, supply a constant signal to the valve to lift the tappet, then adjust the force screw or stroke. Refer to "Tappet Adjustment" on page 28 for detailed procedures.

Settings for Constant Dispensing of Solder Paste (Routine Operation)

Use the following settings for the constant dispensing of solder paste during routine operation of the solder paste system:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Time</td>
<td>6 ms</td>
</tr>
<tr>
<td>Frequency</td>
<td>25Hz</td>
</tr>
<tr>
<td>Fluid pressure (P1)</td>
<td>2 bar (30 psi)</td>
</tr>
<tr>
<td>Operating pressure (P2)</td>
<td>6 bar (87 psi)</td>
</tr>
<tr>
<td>Tappet force screw</td>
<td>55 N (33–35 clicks)</td>
</tr>
<tr>
<td>Tappet stroke</td>
<td>270°</td>
</tr>
<tr>
<td>Nozzle heater temperature</td>
<td>38–40° C (100–104° F)</td>
</tr>
</tbody>
</table>
Appendix C, Special Instructions for Solder Paste Dispensing (continued)

To Change the Nozzle
1. Shut off the air supply to the valve (P1).
2. **Important:** Supply a constant signal to the valve to lift the tappet (Pulse Time = 1 s).
3. Close the valve by stopping the signal to the valve.
4. Remove the nozzle heater retaining nut and then remove the nozzle heater and nozzle.
5. Clean the tappet and the space between tappet and the fluid body.
6. Install the replacement nozzle, the nozzle heater, and the nozzle retaining nut.
7. Close the valve by stopping the signal to the valve.

⚠️ CAUTION
Do not adjust the tappet of a wetted and closed valve. Doing so can grind material into the nozzle, causing nozzle clogging and other problems.

8. Return the tappet force screw (stroke) to the correct setting.

 NOTE: There must be no material between the tappet and the nozzle.

To Service All Wetted Parts (Valve Cleaning)
1. Disassemble the valve as shown in the disassembly procedures contained in this manual. No special disassembly steps are required.
2. Assemble the valve as shown in the assembly procedures contained in this manual up to step 4 on page 34 (installing the nozzle).
3. Before installing the nozzle, supply a constant signal to the valve to lift the tappet (Pulse Time = 1 s).
4. Install the nozzle, the nozzle heater, and the nozzle retaining nut.
5. Close the valve by stopping the signal to the valve.

⚠️ CAUTION
Do not adjust the tappet of a wetted and closed valve. Doing so can grind material into the nozzle, causing nozzle clogging and other problems.

6. Return the tappet force screw (stroke) to the correct setting.

 NOTE: There must be no material between the tappet and the nozzle.

7. Continue with step 7 on page 34.
NORDSON EFD ONE YEAR LIMITED WARRANTY

This Nordson EFD product is warranted for one year from the date of purchase to be free from defects in material and workmanship (but not against damage caused by misuse, abrasion, corrosion, negligence, accident, faulty installation, or by dispensing material incompatible with equipment) when the equipment is installed and operated in accordance with factory recommendations and instructions.

Nordson EFD will repair or replace free of charge any defective part upon authorized return of the part prepaid to our factory during the warranty period. The only exceptions are those parts which normally wear and must be replaced routinely, such as, but not limited to, valve diaphragms, seals, valve heads, needles, and nozzles.

In no event shall any liability or obligation of Nordson EFD arising from this warranty exceed the purchase price of the equipment.

Before operation, the user shall determine the suitability of this product for its intended use, and the user assumes all risk and liability whatsoever in connection therewith. Nordson EFD makes no warranty of merchantability or fitness for a particular purpose. In no event shall Nordson EFD be liable for incidental or consequential damages.

This warranty is valid only when oil-free, clean, dry, filtered air is used, where applicable.